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Context.—Prostate cancer diagnosis rests on accurate
assessment of tissue by a pathologist. The application of
artificial intelligence (AI) to digitized whole slide images
(WSIs) can aid pathologists in cancer diagnosis, but robust,
diverse evidence in a simulated clinical setting is lacking.

Objective.—To compare the diagnostic accuracy of
pathologists reading WSIs of prostatic biopsy specimens
with and without AI assistance.

Design.—Eighteen pathologists, 2 of whom were geni-
tourinary subspecialists, evaluated 610 prostate needle
core biopsy WSIs prepared at 218 institutions, with the
option for deferral. Two evaluations were performed
sequentially for each WSI: initially without assistance,
and immediately thereafter aided by Paige Prostate (PaPr),
a deep learning–based system that provides a WSI-level
binary classification of suspicious for cancer or benign and
pinpoints the location that has the greatest probability of
harboring cancer on suspicious WSIs. Pathologists’ chang-

es in sensitivity and specificity between the assisted and
unassisted modalities were assessed, together with the
impact of PaPr output on the assisted reads.

Results.—Using PaPr, pathologists improved their sensi-
tivity and specificity across all histologic grades and tumor
sizes. Accuracy gains on both benign and cancerous WSIs
could be attributed to PaPr, which correctly classified
100% of the WSIs showing corrected diagnoses in the
PaPr-assisted phase.

Conclusions.—This study demonstrates the effectiveness
and safety of an AI tool for pathologists in simulated
diagnostic practice, bridging the gap between computa-
tional pathology research and its clinical application, and
resulted in the first US Food and Drug Administration
authorization of an AI system in pathology.

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0066-
OA)

Prostate cancer (PrCa) is the second most common cancer
among men and one of the leading causes of cancer

death globally.1 Pathologic examination of prostate biopsy
tissue by light microscopy remains the gold standard in
PrCa diagnosis. Cancer identification and the reporting of
associated cancer parameters by pathologists allow clini-
cians to undertake a crucial treatment decision: differenti-
ating between patients at risk of clinically significant PrCa
associated with higher mortality and requiring definitive
treatment versus patients with clinically indolent PrCa that
can be closely followed and does not require immediate
treatment.2 Evidence demonstrates that pathologists have
suboptimal sensitivity at detecting cancer in core needle
biopsy specimens, particularly when cancerous foci are
small or well differentiated.3–5 Detecting all positive cores,
even those containing minimal cancer foci, is crucial for the
clinician to decide between definitive therapy and watchful
waiting.2,6 Cocktail immunohistochemical (IHC) analysis
can mitigate false-negative diagnoses, but cannot be applied
as a universal screening tool on tissue because of cost and
diagnostic delay.5 Additional tools that facilitate the
screening of prostate tissue in all patients are needed.
With the approval of the first digital pathology system for

routine diagnostic use by the US Food and Drug Admin-
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Study Setup

The objective of the study was to evaluate pathologist
performance in detecting invasive cancer and foci suspicious for
invasive cancer on WSIs of hematoxylin-eosin (H&E)–stained
prostate core needle biopsies unaided and with PaPr assistance.

The data set included 610 de-identified prostate needle biopsy
WSIs stained with H&E. Fifty percent of the slides were originally
prepared at MSKCC and the other 50% were prepared at 217
external institutions; all slides were reviewed and diagnosed using
conventional microscopy at MSKCC. For slides originating from
MSKCC, a single glass slide with 3 levels was digitized; for slides
originating outside of MSKCC, the glass slide felt to be most
representative of the diagnostic findings was digitized. A Philips
Ultra-Fast Scanner Series 2 (In Vitro Diagnostics version 3.2),
which scans only at 340 and is part of an FDA-approved digital
pathology solution, was used for digitization. The ground truth
diagnosis, which definitively classified all slides as cancerous or
noncancerous, was based on all studies (ie, IHC, recuts, expert
consultation) performed at the time the case was reported by GU
subspecialized pathologists at MSKCC; PaPr was not used as an aid
in establishing the original diagnosis. Four hundred twenty (of 610;
69%) WSIs were benign (Supplemental Table 1), and 190 (of 610;
31%) WSIs, selected both consecutively and based on tumor size,
harbored invasive acinar adenocarcinoma, intraductal carcinoma,
or atypical small acinar proliferation suspicious for cancer (ASAP).
The main inclusion criterion was tumor size, so in cases with
multiple parts and Gleason patterns, the part with the lowest tumor
volume was selected, regardless of Gleason grade. Ninety WSIs
harbored invasive adenocarcinoma measuring 0.5 mm or less
(defined as hard cases) or intraductal carcinoma, 90 WSIs contained
invasive adenocarcinoma measuring more than 0.5 mm (defined as
easy cases), and 10 WSIs were classified as ASAP. This enrichment
of the data for small tumor foci was done to challenge the system
with lesions that can be overlooked by pathologists. Benign slides
contained a representative spectrum of pathologic findings,
including basal cell hyperplasia, high-grade prostatic intraepithelial
neoplasia (HGPIN), atrophy, and inflammation, encountered
among a consecutively benign biopsy cohort, without data set
enrichment. In particular, atrophy was present in 4 of 420 benign
WSIs (1%), whereas 29 WSIs were of previously treated prostatic
tissue. WSIs with significant scanning issues that compromised the
ability to render a definitive diagnosis (eg, out-of-focus areas, tissue
folds, or missing tissue), were excluded. WSIs used for develop-
ment of PaPr were excluded. The protocol and all study materials
were reviewed and approved by an institutional review board of
WIRB-Copernicus Group.

Sixteen pathologists, board certified in anatomic pathology and
practicing for 2 to 34 years (mean, 11.6 6 10.8 years), completed
this study. Two (12.5%) had completed a fellowship in GU
pathology; the other 14 (87.5%) had completed at least one
fellowship, but none in GU pathology. Three (18.7%) completed
the study at a Clinical Laboratory Improvement Amendments–
certified site and 13 (81.3%) completed the study remotely.
Pathologists were compensated for their participation in the study.

All participants were provided with a Philips PP27QHD monitor.
At review sites, upload speed ranged from 0.1 to 244.25 Mbps and
download speed ranged from 5.72 to 498.56 Mbps (Supplemental
Table 2). All participants were asked to submit workstation
photographs to document connection of the monitor in a
functional state. Prior to study initiation, participants were trained
on the use of Paige’s FDA-cleared pathology viewer, FullFocus;
PaPr; and the data capture tool via a presentation during a live
videoconference session; participants had to demonstrate compe-
tency at the end of training. All study participants were assigned to
review 610 WSIs in a randomized order (Figure 1). Using FullFocus,
each pathologist reviewed each WSI twice, sequentially (paired
read), resulting in 19 520 unique reads and 9760 paired reads.
During the initial (unassisted) read, the participant was presented
with the WSI without PaPr assistance; during the second (assisted)
read, immediately following the first, the participant evaluated the

istration (FDA) in 2017,7,8 the field of pathology is 
undergoing a digital revolution whereby glass slides of 
tissue samples are digitized as whole slide images (WSIs) 
and examined using computer monitors rather than 
traditional light microscopes. Not only has digital pathology 
enhanced ease of consultation and viewing,9,10 improved 
efficiency,11,12 and boosted pathologist satisfaction,13,14 but 
crucially, digital pathology permits the application of 
artificial intelligence (AI) systems.15 Recent advances in 
machine learning, particularly in the design and training of 
deep neural networks, have accelerated the development of 
computational pathology, in which state-of-the-art deep 
learning solutions can power decision support systems 
applicable to diagnostic pathology as well as tools to aid 
biomarker discovery.16,17
Prostate pathology in particular has become an area of 

strong interest in the application of machine learning 
algorithms.18–21 Machine learning algorithms applied to 
PrCa diagnosis have demonstrated high diagnostic stand-
alone performance, with areas under the curve above 
0.98.18–21 An alpha version of the Paige Prostate (PaPr) 
system for cancer diagnosis, trained on vast data sets using 
sophisticated machine learning approaches that did not 
require pixel-level manual annotation of cancer, resulted in 
clinical-grade outputs, invariant to stain and preparation 
differences across laboratories, and importantly resulted in 
breakthrough designation by the FDA in 2019.3,18 Akin to 
previous tools designed as diagnostic aids, a comprehensive 
assessment of such tools in the hands of diagnosticians is 
paramount to understand the impact on diagnostic accura-
cy. An early, small-scale study of PaPr Alpha was 
undertaken in a simulated sign-out environment to test 
how pathologists interact with AI tools, and it showed that 
pathologists using PaPr Alpha had a statistically significant 
increase in sensitivity, from 74% to 90%.3

Encouraged by these initial results, we conducted a more 
comprehensive study to robustly establish the impact of 
using PaPr, a more mature version of PaPr Alpha, as a 
diagnostic aid to pathologists, assisting them in the 
detection of prostatic acinar adenocarcinoma in digitized 
core needle biopsy specimens in a simulated clinical 
workflow. This study was designed to demonstrate sufficient 
efficacy and safety of the software to justify its use in routine 
diagnostic practice.

METHODS

Paige Prostate
The details about the training of PaPr have been reported 

elsewhere.4,18 In brief, PaPR is a deep learning–based system that 
was trained using 32 341 prostate biopsy WSIs from 6775 patients, 
scanned at 320 magnification using multiple-instance learning,18 

enabling it to be trained without any pixel-level manual 
annotations. The ground truth for training consisted solely of the 
binary classification of each WSI as benign or cancerous, based on 
the information within the corresponding pathology report. All 
glass slides were prepared and diagnosed by genitourinary (GU) 
subspecialist pathologists at Memorial Sloan Kettering Cancer 
Center (MSKCC), New York, New York.
PaPr outputs a binary WSI-level classification for suspicion of 

cancer based on applying a cutoff value to the continuous score, 
and if a WSI is suspicious, it additionally outputs a focus location on 
the WSI with the greatest statistical evidence for suspicion of 
cancer. See the supplemental digital content (containing 8 tables) 
for additional details on the design, training, and optimization of 
PaPr.
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same WSI with the results of PaPr. The study was thus designed to
assess the use of PaPr as a second-read device. For each read, the
participant was instructed to classify the slide as (1) harboring
invasive cancer or suspicious for cancer (ie, ASAP), (2) not
harboring cancer, or (3) defer for more information, which could
include an intent to request more histologic levels, seek consul-
tation, or undertake IHC analysis, or another documented reason.
The classification of the first read could not be altered after the
assisted mode was displayed. All participants were given up to 7
days to complete the study.

Statistical Analysis

Results were reported using descriptive statistics. Primary
analyses were based on coprimary endpoints of sensitivity and
specificity obtained from the reader evaluations compared with the
diagnostic categorization of each WSI. The stand-alone perfor-
mance of the PaPr was also summarized. For all analyses, ‘‘defer for

more information’’ was considered a correct assessment in either
modality, because the various steps taken after a deferral (ie, IHC
analysis, additional levels, second opinion) most likely would have
led to a correct diagnosis.

The primary analyses were performed using the multireader
multicase (MRMC) method outlined in Gallas et al22 for binary data
from a fully crossed study. The overall average of reader responses
was obtained giving all readers equal weight. Variance estimates for
each type of read and the differences in reads were obtained and
used to calculate 2-sided 95% CIs and evaluate the primary study
hypotheses. Other methods used in the analysis of the study
included bootstrapping and random effect logistic models.

For sensitivity, the primary analysis was based on demonstrating
the difference in assisted minus unassisted average reader
performance exceeded a superiority margin. A 1-sided P value
was generated based on the Z-score calculated with the estimated
reader average Sensitivityassisted � Sensitivityunassisted � SM (supe-
riority margin) divided by the standard error for the difference
obtained from the MRMC model. A 1-sided P value of less than or
equal to 0.025 was considered statistically significant. The 2-sided
95% CI for the difference in sensitivity rates (assisted minus
unassisted) was also provided based on the reader averages and
variance of the difference from the MRMC model.

For specificity, the same approach was used to evaluate if the
difference in assisted minus assisted average reader performance
exceed a noninferiority margin. A 1-sided P value was calculated
based on the Z-score calculated with the estimated reader average
Specificityassisted�SpecificityunassistedþNIM (noninferiority margin)
divided by the standard error for the difference from the MRMC
model. A 1-sided P value less than or equal to .025 was considered
statistically significant. The 2-sided 95% CI for the average reader
specificities for each method and difference was calculated using
the same method.

FINDINGS

The stand-alone diagnostic accuracy performance of PaPr
on this data set had a sensitivity of 97.4% (95% CI, 94.0%–
99.1%) and specificity of 94.8% (95% CI, 92.2%–96.7%) at
the WSI level. The AUC was 0.99 (95% CI, 0.98–0.99).
Performance was evaluated across patient age, race, and
ethnicity, and differences in performance across these
variables were insignificant (Supplemental Table 3). Of the
5 false-negative WSIs, 4 were diagnosed as ASAP and 1
showed 0.2 mm of Gleason 3 þ 3 cancer present only
perineurally. PaPr showed a specificity on previously treated
(ie, status post radiation or hormonal therapy) prostatic
tissue of 92%. False-positive classifications (22) included
WSIs with atrophy (1), treated benign tissue (2), HGPIN (2),
and aggregates of small, crowded benign glands.
The differences between sensitivity and specificity of

unassisted pathologist reads and PaPr-assisted reads were
evaluated. The average sensitivity of PaPr-assisted pathol-
ogist reads increased significantly, by 8 percentage points,
from 88.7% to 96.6% (95% MRMC CI, 4.5%–11.5%; P ,
.001), reducing detection errors by 70%. The average
specificity of PaPr-assisted pathologist reads also signifi-
cantly increased, by 0.7 percentage points, from 97.3% to
98.0% (95% MRMC CI, 0.1%–1.2%; P ¼ .02) (Figure 2, A
and B; Supplemental Table 4), increasing specificity overall
by 24%. Statistically significant sensitivity gains were seen
among non-GU pathologists (8.5% gain; 95% MRMC CI,
4.8%–12.6%; P , .001) and GU pathologists (3.9% gain;
95% MRMC CI, 0.5%–7.9%; P ¼ .02) (Figure 2, A and B);
gains in specificity were also seen in both non-GU
pathologists and specialists, but reached statistical signifi-
cance only among non-GU pathologists (0.7% gain; 95%
MRMC CI, 0.0%–1.6%; P ¼ .04). However, there was no

Figure 1. Study protocol: sequential paired-read study design to
assess potential benefit to pathologists of using Paige Prostate.
Abbreviation: WSI, whole slide image.
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statistically significant difference in these improvements
between these 2 groups (see Supplemental Table 5). There
were nonsignificant differences in unassisted sensitivity and
specificity between reader groups with 10 or less and more
than 10 years of experience.
Gains in sensitivity were observed across all histologic

grades and tumor sizes (see Supplemental Table 6).
Similarly, the presence of atrophy or HGPIN in benign
slides was not correlated with reader performance (see
Supplemental Table 7). Statistically significant gains in
sensitivity were seen among pathologists reviewing WSIs
on-site (6.8%; 95% MRMC CI, 2.3%–12.1%; P¼ .004; 0.7%)
and remotely (8.2% sensitivity gain; 95% MRMC CI, 4.5%–
12.7%; P , .001) (Figure 2, A and B; Supplemental Table 6);
gains in specificity were observed for on-site and remote
participants, but did not reach statistical significance. There
was no statistically significant difference in the observed
improvements between the remote and on-site patholo-
gists.
To ensure that the enhanced human performance in both

the detection of cancerous foci and the recognition of
benign tissue was not simply a result of reexamination of the
WSIs, we assessed the number of paired reads with Paige-
driven changes, defined as those in which the PaPr
classification was correct and matched the PaPr-assisted
pathologist reads. Overall, PaPr-assisted pathologist reads
differed from PaPr-unassisted pathologist reads in 797 reads
(8.2% of total 9760 paired reads). All 341 paired reads
(100%) that became correct (initially incorrect in PaPr-
unassisted pathologist reads and either correct or deferred in
PaPr-assisted pathologist reads) were Paige driven; 85.2% of
54 paired reads that became incorrect (initially correct or
deferred in PaPr-unassisted pathologist reads and incorrect
in PaPr-assisted pathologist reads) were Paige driven
(Figure 3; Supplemental Table 8).
We sought to understand how PaPr might have influ-

enced the assisted read in cases where it differed from the
unassisted read to evaluate the assay’s impact on sensitivity
and specificity (Figures 3 through 5, A through H;
Supplemental Table 8).
Assessing improvements in specificity, in 15 paired reads,

a benign WSI was incorrectly read as cancer in the

unassisted read and correctly classified as benign in the
PaPr-assisted read; in 100% of these paired reads, PaPr
correctly identified the slide as benign.
Assessing improvements in sensitivity, in 59 paired reads,

a cancerous WSI was incorrectly read as benign in the
unassisted read and correctly read as cancerous in the PaPr-
assisted read; in 100% of these paired reads, PaPr correctly
identified the slide as cancerous.
In 15 paired reads, a benign WSI was correctly read as

benign in the unassisted read and incorrectly read as cancer
in the assisted read; in 20% (3 of 15) of these paired reads,
PaPr correctly identified the slide as benign. Review of the
11 WSIs corresponding to these reads demonstrated that the
most commonly misclassified slides contained small foci of
small glands (mimicking ASAP), florid HGPIN, and a
benign prostatic gland around a nerve. For the majority of
these WSIs (8 of these WSIs with 39 paired reads), however,
the more common paired read pattern was true-negative in
the unassisted read and defer in the assisted read.
In 4 paired reads, a cancerous WSI was correctly read as

cancerous in the unassisted read and incorrectly read as
benign in the PaPr-assisted read; in 100% of these paired
reads, PaPr correctly identified the slide as cancerous. Each
of these shifts came from a different participating pathol-
ogist, and showed International Society of Urological
Pathology 1, 2, and 4 cancers involving from 2% to 80%
of the tissue. It is likely that these were a result of
transcription errors by the participants; however, in a WSI,
PaPr correctly classified the WSI as cancerous, but the focus
of interest misidentified the cancerous focus.
Finally, we assessed potential efficiency gains and

efficiency losses in the use of PaPr. We defined paired
reads resulting in efficiency gains as those that were initially
deferred in PaPr-unassisted pathologist reads and correct in
the PaPr-assisted pathologist reads. Of 288 paired reads
showing an efficiency gain, 99.7% (287) were Paige driven.
We defined paired reads resulting in efficiency losses as
those that initially correct in PaPr-unassisted pathologist
reads and deferred in the PaPr-assisted pathologist reads.
Of 114 paired reads showing an efficiency loss, 98.2% (112)
were Paige driven (Figure 3; Supplemental Table 8).

Figure 2. Gains in performance by pathologists, stratified by experience and location. Asterisks (*) indicate statistically significant changes (P ,
.05). A, Statistically significant gains in sensitivity were seen regardless of pathologist type and location of slide review. B, Statistically significant gains
in specificity were seen among all pathologists overall and among nonuropathologists.
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INTERPRETATION

This study robustly demonstrates the impact that clinical-
grade AI tools can have on patient diagnosis when applied
to prostatic core needle biopsy interpretation. This work
demonstrates the efficacy and safety of PaPr, and it was the
basis for the first marketing authorization by the FDA for an
AI system in pathology, which showed objective and
systematic analysis of the system being used within a digital
pathology workflow. The FDA authorization paves the way
for the use of AI in routine clinical work; Tim Stenzel, MD,
PhD, director of the FDA’s Office of In Vitro Diagnostics
and Radiological Health, stated that ‘‘[t]he authorization of
this AI-based software can help increase the number of
identified prostate biopsy samples with cancerous tissue,
which can ultimately save lives.’’7

This study demonstrates the robust stand-alone perfor-
mance of PaPr on a challenging data set composed of cases
from 218 unique institutions worldwide, a testament to the
robustness of the system, its insensitivity to H&E staining
and tissue preparation variabilities, and its overall general-
izability. Thus, a high level of performance of PaPr can be
expected without the need for on-site calibration to
maintain the algorithm’s performance characteristics, a
crucial distinguishing feature from other similar tools.20

Furthermore, performance was evaluated across patient age,

race, and ethnicity, and differences in performance across
these variables were insignificant, a particularly important
analysis that ensures there is no unknown bias in output
and that such tools do not contribute to health care
disparities.23

The greatest contribution of the present study is that it
examines, in a simulated clinical environment, how the
diagnostic precision of pathologists improves when aided by
clinical-grade AI, specifically resulting in more true positives
and more true negatives.
Accuracy gains on both benign and cancerous WSIs can

be attributed to PaPr, which correctly classified 100% of the
WSIs showing correct diagnoses in the PaPr-assisted phase.
Diagnostic aid tools may be viewed as having utility

limited to certain diagnosticians (ie, physicians with less
experience) or certain disease states (ie, low-volume or well-
differentiated carcinomas), calling into question the benefit
to the patient of broad adoption. Here, we show that both
non–GU-specialist pathologists and GU-specialist patholo-
gists showed statistically significant improvements in
sensitivity based on using PaPr. Despite the smaller number
of GU-specialist participants, the differences between the
reader types were not statistically significant, suggesting that
the use of PaPr may bring the performance of non-GU
pathologists closer to that of GU specialists, democratizing

Figure 3. Change in pathologists’ assessments driven by Paige Prostate. Paige Prostate–assisted pathologist reads differed from Paige Prostate–
unassisted pathologist reads in 797 reads (8.2% of total 9760 paired reads). Paige-driven changes are defined as those in which the Paige Prostate
classification was correct and matched the Paige Prostate–assisted pathologist reads. All reads that became correct were Paige driven. Many reads
that became incorrect were also Paige driven. Paige-driven reads that resulted in efficiency gains slightly outnumbered those that resulted in efficiency
losses, but overall rates were similar.
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expertise. Given that non-GU pathologists diagnose the
majority of prostate biopsies, it is expected that the broad
use of a tool such as PaPr would bring benefits to a wide
portion of the patient population. Improvements in cancer
detection were also not limited to specific grades or sizes, as
gains in sensitivity with the use of PaPr were observed
across all histologic grades and tumor sizes, even in WSIs
where the grade and volume of cancer might affect the
decision about the need for definitive therapy. Though PaPr
was designed to maximize sensitivity, our results show a
concomitant modest improvement in specificity, demon-
strating how PaPr could aid pathologists in correctly
classifying benign mimickers of cancer, such as treatment
effect and atrophy.
Previous work on the human-AI interaction in pathology

is limited. Steiner et al24 demonstrated that a tool for the
detection of breast cancer metastasis in lymph nodes can
improve sensitivity in pathologists’ detection of metastases,
particularly for small metastatic foci. Pantanowitz et al20

described the use of a PrCa detection algorithm as a
postdiagnostic second-read tool. When used in practice, the
tool issued cancer alerts on 509 of the 11 429 H&E-stained
slides. The majority (90.9%) of the cancer alerts shown to
the pathologist resulted in no additional action; a minority
of alerts were found to trigger additional IHC analysis,
levels, or consultation, and, in one case, the system led to
the detection of cancer that was initially overlooked,
allowing the patient to be enrolled in an active surveillance
protocol.20 These studies, however, did not take into account
pathologists’ stand-alone performance with the cases, nor
how their interaction with AI affected diagnostic reads in
simulated clinical practice.
Our group previously evaluated an alpha version of PaPr

in the hands of non–GU-specialized pathologists, assessing
the interaction of the pathologist and the AI tool in PrCa

detection in a simulated clinical practice.3 This study
involved unassisted and assisted reads separated by a 4-
week washout period. There was a statistically significant
increase in sensitivity with the use of PaPr Alpha, which was
maintained for easy-to-miss small and low-grade cancers.3

This study was limited by its small participant size, small
data set, and lack of a deferral option, and thus, alone, could
not be used to justify routine use of PaPr Alpha.
This current study differed from and improved on the prior

studies in many important ways. First, the larger participant
pool included subspecialized GU pathologists. Second, by
including the option for deferral, it more closely approximat-
ed the real-world pathology workflow. Third, the data set,
although still enriched for small, well-differentiated cancers,
included a greater breadth of carcinoma (in both volume and
Gleason scores) as well as benign conditions known to mimic
PrCa. Fourth, the function of PaPr was optimized compared
with the prior alpha version. Last, the study design, which
lacked a washout period and consisted of a prior PaPr-
independent evaluation stage, was purposeful in its intent to
evaluate PaPr as a second-read software device.
Further insight into the interplay between pathologist and

PaPr can be seen in the rare cases that were originally
correct without PaPr that were then deferred or became
incorrect in the PaPr-assisted read. In benign WSIs, when
the unassisted diagnosis was correct but changed to defer or
cancerous in assisted mode, PaPr had identified false-
positive foci, some of which showed benign mimics of
carcinoma, in most shifts. In cancerous WSIs, when the
unassisted diagnosis was correct but changed to defer in the
assisted mode, PaPr had incorrectly classified the WSI as
benign in the majority of shifts (Figures 3 and 4;
Supplemental Table 8). This analysis highlights the need
for pathologists to understand the scenarios where machine
learning tools can underperform and the need for pathol-
ogists to maintain a high level of active participation in the
diagnostic process. It further underscores the importance of
studies such as this one in enhancing our understanding of
the human-machine interaction and its potential impact on
the final diagnosis.
Our study has limitations. The entire range of rare cancer

subtypes and benign mimics was not included in the data
set, and the performance of PaPr in such cases has not been
assessed. Atrophy, for example, can be mistakenly diag-
nosed as malignancy or ASAP, and the atrophic variant of
acinar adenocarcinoma may pose a diagnostic challenge. In
our study’s data set, atrophy was present in 1% (4 of 420) of
benign slides, but the performance of AI-assisted patholo-
gists in discriminating benign mimickers and the variety of
cancer subtypes, although of great relevance, was beyond
the scope of this study. Pathologists reviewed only one
H&E-stained WSI devoid of clinical or radiologic context; it
is possible that the number of deferrals would have been
less had the participants had access to levels and clinical-
radiologic information. Future studies should include
complete cases, ideally in a prospective manner. The study
was not designed to measure the difference in time spent
reviewing WSIs unassisted compared with assisted, and
future studies might be designed to capture these data and
understand the impact of user design in result display,
connection speeds, and other factors on reading times.
Finally, in a small subset of WSIs, pathologists changed an
initially correct interpretation to an incorrect interpretation
after PaPr displayed incorrect results. Future studies are
warranted to ascertain the factors that can optimize the AI-

Figure 4. Overall rates for assessment shifts between unassisted and
assisted reads. Gains in accuracy of 3.5% were observed, as well as
losses of 0.5%. All gains were attributed to Paige Prostate results,
whereas only 0.08% of the losses could be attributed to Paige Prostate
results. Accuracy gains are defined as incorrect Paige Prostate–
unassisted pathologist reads that became correct or were deferred in
the Paige Prostate–assisted pathologist reads. Accuracy losses are
defined as correct or deferred Paige Prostate–unassisted pathologist
reads that became incorrect in the Paige Prostate–assisted pathologist
reads.
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pathologist interaction, whether it be further confidence in

the algorithm, more experience in digital diagnostics by the

user, or a better user interface.

In summary, our study indicates that PaPr, a clinical-
grade, robust AI, is mature enough to be applied broadly in
the clinical setting. Its use by GU-specialized and non–GU-
specialized pathologists during prostate core needle biopsy

Figure 5. Representative images of assess-
ment shifts in whole slide images (WSIs). A,
Benign seminal vesicle misclassified as cancer
by 5 pathologists and deferred by 3 pathol-
ogists. Paige correctly classified the WSI as
benign. With Paige, 5 pathologists correctly
classified the slide as benign and 3 patholo-
gists deferred. B, High-power view showing
enlarged cells with cytoplasmic pigment,
characteristic of seminal vesicle. C, Interna-
tional Society of Urological Pathology (ISUP)
4 cancer involving 2% of the tissue misclas-
sified as benign by 12 pathologists and
deferred by 1 pathologist. Paige correctly
classified the WSI as cancerous. With Paige,
9 pathologists correctly classified the slide as
cancerous and 4 pathologists deferred. D,
Indication of focus of interest in C, by Paige.
E, ISUP 5 cancer involving 95% of the tissue
misclassified as benign by 1 pathologist and
deferred by 1 pathologist. Paige correctly
classified the WSI as cancerous. With Paige,
both pathologists correctly classified the slide
as cancerous. F, Indication of focus of interest
in E, by Paige. G, Benign WSI misclassified by
Paige as cancerous. Seven pathologists cor-
rectly classified the WSI as benign and 1
pathologist deferred. With Paige, 6 patholo-
gists deferred and 1 incorrectly classified the
WSI as cancerous. H, Indication of focus of
interest in G, by Paige (hematoxylin-eosin,
original magnifications310 [A and C through
H] and340 [B]).
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assessment results in greater sensitivity and specificity. For
clinicians and patients, it means higher confidence in the
resulting pathology diagnosis, regardless of access to
specialist expertise. For pathologists, it heralds a revolution
in the way pathology is practiced and reinforces the central
role pathologists play in patient care.

The authors would like to thank Caitlin Chambers, BA, and
Rebecca Kalant, BFA, for their assistance in data structuring and
figure creation.
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